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Abstract. With the significant growth of the financial market, investment options
have increased, which can pose a challenge. Thus, one of the most studied
problems in the financial field is the Portfolio Optimization Problem, where
one seeks the major possible return but with minimal risk. Given that both
objectives are in conflict and must be simultaneously optimized, a multi-objective
optimization problem (MOP) arises naturally. Even more, since certain conditions
must be satisfied, this MOP is restricted; thus, we really are dealing with a
constrained MOP (CMOP). Multi-objective evolutionary algorithms (MOEAs)
are a widely accepted approach for the numerical treatment of these problems. For
constrained problems, however, these methods still have room for improvement
to compute satisfactory approximations of the solution sets. In this work, we
propose to use different penalty strategies to improve NSGA-II and NSGA-III
performance when dealing with the portfolio optimization problem. We claim that
penalty strategies helped the evolutionary algorithm to obtain a greater number of
feasible individuals while preserving optimal solutions. Numerical results support
this claim.

Keywords: Portfolio optimization, penalization, evolutionary algorithms.

1 Introduction

With the significant growth of the financial market, investment options have increased,
which can pose a challenge. The availability of numerous options in the market makes
it difficult to decide which is the best, even if there is always a single best option. We
must remember that every investment comes with risk. If we analyze it carefully, we can
identify two different objectives when investing: on the one hand, we aim to maximize
investment returns, and on the other hand, we seek to minimize the associated risk.

These objectives often conflict since higher expected returns typically come with
higher risks. Such problems are known as multi-objective optimization problems
(MOPs). Several approaches have been explored to address these types of problems,
commonly involving the application of computational tools.
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Algorithm 1 Quadratic Penalty Method.
Require: Given µ0 > 0, a nonnegative sequence {τk} with τk 0, and a starting point xs

0;
for k = 0, 1, 2, . . . do

Find an approximate minimizer xk of Q as in Equation 5, starting at xs
k, and finishing

when ∥∇Q(x)∥ ≤ τk;
if convergence test is satisfied then

stop return approximate solution xs
k

end if
Choose new penalty parameter µk+1 > µk;
Choose new starting point xs

k+1;
end for

One of these tools is multi-objective algorithms, also known as MOEAs
(Multi-Objective Evolutionary Algorithms), which employ techniques inspired by
biological evolution to find optimal solutions. MOEAs have caught the interest of many
researchers (see, e.g., [8, 5, 3, 9, 12]) over the last decades. Some reasons for this include
that MOEAs are of global nature.

Moreover, due to their global approach, they compute a finite size approximation
of the entire Pareto Set in one single execution of the algorithm. Also, they have been
successfully applied in several applications [18, 20, 29, 24], particularly in the portfolio
optimization problem [30, 14].

However, not all of these algorithms handle constraints efficiently. Most MOEAs
use feasibility rules to deal with constrained MOPs [7, 15, 21], while others use penalty
strategy [25]. Penalty strategy involves assigning a penalty value to infeasible solutions
based on the degree of violation. Therefore in the search for optimal solutions, these
infeasible solutions will be left behind since they will not get the minimal objective
value due to the imposed penalization.

Various families of penalty functions have been studied to improve MOEAs
performance when dealing with constrained optimization. There are two main
approaches: the first one is based on the constraint violation value, and the second one is
based on the distance to the feasible region [13, 25]. One of the most common problems
when using both approaches is that the search’s effectiveness strongly depends on the
selected penalty function.

While evolutionary-guided search with adaptive penalization demonstrates an
advantage as an optimization method for these highly restrictive problems [6, 19].
Utilizing feedback from solution search, as well as any specific information, provides an
adaptive and dynamic penalization that is effective. The portfolio optimization problem
aims to find the optimal distribution of financial assets to maximize expected return and
minimize risk. MOEAs provide an effective solution to this problem due to their ability
to work with multiple objectives and find optimal points.

The traditional portfolio optimization approach is based on Markowitz’s
theory. However, this approach assumes normal distributions for asset returns, which
can be an idealistic scenario. Additionally, Markowitz’s theory does not consider the
diversity of objectives that investors may have. Utilization of MOEAs becomes crucial
in this context. For example, particle swarm optimization (PSO) has been successfully
used in different portfolio optimization problems [30, 14].
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Algorithm 2 Classical l1 Penalty method.
Require: Given µ0 > 0, tolerance τ > 0 and a starting point xs

0;
for k = 0, 1, 2, . . . do

Find an approximate minimizer xs
k of ϕ1(x), starting at xs

k;
if MInf(x) < τ then

Stop return approximate solution xs
k

end if
Choose new penalty parameter µk+1 > µk;
Choose new starting point xs

k+1;
end for

Also, ant colony optimization has been applied to Markowitz’s portfolio model [11].
In [2], the authors applied the fireworks algorithm to solve the constrained portfolio
problem for the first time. Also, genetic algorithms have been used to solve this
problem, specifically in [1] NSGA-II and NSGA-III were employed to solve the
portfolio problem for 2 and 3 objectives.

Here, the authors presented that NSGA-II was effective only for two objectives and
that NSGA-III was effective only for three objectives. This work aims to optimize
various investment portfolios using three different penalty methods implemented on
NSGA-II and NSGA-III algorithms.

A comparative analysis is conducted between the results obtained by the MOEA
without a penalty and those obtained using the different penalty strategies. Based on
the results, we show that when dealing with the portfolio optimization problem, it is
very important to implement the correct penalty strategy, as it improves the normal
behavior of MOEAs in this problem, especially NSGA-II and NSGA-III.

2 Background

Here, we consider continuous MOPs that can be expressed as:

min
x ∈ Rn

F (x),

s.t. gi(x) ≤ 0 for i = 1, . . . ,m,

hi(x) = 0 for i = 1, . . . , q.

(1)

Hereby, F is the map of objective functions F (x) = (f1(x), . . . , fk(x))
T . Each

objective fi : Rn → R is assumed for simplicity to be continuously differentiable, and
with feasible domain:

Ω = {x ∈ Rn : hi(x) = 0, i = 1, . . . , q and gi(x) ≤ 0, i = 1, . . . ,m}. (2)

The optimality of a MOP is defined using the concept of Pareto dominance: let
v,w ∈ Rk, then v is less or equal than w (v ≤p w), if vi ≤ wi for all i ∈ {1, . . . , k};
the relation <p is defined analogously. A vector y ∈ Ω is dominated by a vector
x ∈ Ω (x ≺ y) with respect to (1) if F (x) ≤p F (y) and F (x) ̸= F (y), else y is
called non-dominated by x.
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Algorithm 3 Augmented Lagrangian Method.
Require: Given µ0 > 0, tolerance τ > 0, starting points xs

0 and λ0;
for k = 0, 1, 2, . . . do

Find an approximate minimizer xs
k of LA(·, λk), starting at xs

k, and finishing when
∥∇LA(xk;λ

k)∥ ≤ τk;
if convergence test is satisfied then

Stop return approximate solution xs
k

end if
Update Lagrange multipliers using equation 9 to obtain λk+1;
Choose new penalty parameter µk+1 ≥ µk;
Set starting point for the next iteration to xs

k+1 = xk;
Select tolerance τk+1;

end for

In case F (x) <p F (y) the relation is called strong Pareto dominance. A point
x∗ ∈ Rn is Pareto optimal to (1) if there is no y ∈ Ω which dominates x. The set of all
the Pareto optimal points PΩ is called the Pareto set, and its image F (PΩ) is called the
efficient set or Pareto front.

2.1 Portfolio Optimization Problem

The portfolio model, also known as the Markowitz model, aims to maximize the return
function while minimizing the risk function. Therefore, a MOP naturally arises. We can
define the problem as:

Max. Return:
N∑
i=1

wiµi,

Min. Risk:
N∑
i=1

N∑
j=1

wiwjσij ,

s.t.
N∑
i=1

wi = 1,

0 ≤ wi ≤ 1 for i = 1, . . . , N,

(3)

where N is the number of available assets, µi represents the expected return of asset i,
σij is the covariance between assets i and j, and wi is the decision variable for asset
i. It is worth noticing that wi has a weighting effect on the return function and the
covariance matrix; for more details see [27].

As mentioned before, we try to find solutions that simultaneously satisfy the above
conflicting functions. In this work, the optimal portfolio will be the one that provides
us with maximum return and minimum risk.
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Table 1. This table presents the MOEAs parameters used in the experimental section.

Parameter NSGAII NSGAIII

Population size 100 100

Crossover probability 0.9 1

Mutation probability 0.1 1/n

Distribution index for crossover 20 20

Distribution index for mutation 30 20

When diversification is considered, the model can be written as:

Max. Return:
N∑
i=1

wiµi −
N∑
i=1

ci | wi −w0
i |,

Min. Risk:
N∑
i=1

N∑
j=1

wiwiσij ,

Max. Entropy:
N∑
i=1

wi log(wi),

s.t.
N∑
i=1

wi = 1,

0 ≤ wi ≤ 1 for i = 1, . . . , N,

(4)

where w0 is the existing portfolio and
∑N

i=1 ci | wi −w0
i | is the total transaction cost

of the portfolio. Here, entropy is used as the divergence measure of asset portfolio in
finance literature [17].

2.2 Penalty Methods

– Quadratic Penalty Method. In this method, the penalty terms are the squares of the
constraint violations. We define the quadratic penalty function for Problem 1 as:

Q(x) = f(x) +
µ

2

q∑
i=1

h2
i (x) +

µ

2

m∑
i=1

(max{gi(x), 0})2, (5)

where µ > 0 is the penalty parameter. In Algorithm 1, the general framework based
on the quadratic penalty function is presented. It is worth noticing that the parameter
sequence {µk} can be chosen adaptively, considering the difficulty of minimizing the
penalty function at each iteration.

– Nonsmooth Penalty Function. Nonsmooth penalty functions are less dependent on
the strategy used to choose penalty parameters, which makes them desirable.
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(a) (b)

Fig. 1. Comparison of the obtained Pareto fronts for Portfolio 1 and Portfolio 3, respectively, on
a certain execution.

A popular nonsmooth penalty function for the general nonlinear programming
problem is the l1 penalty function, which can be defined as:

ϕ1(x) = f(x) + µ

q∑
i=1

|hi(x)|+ µ

m∑
i=1

max{gi(x), 0}, (6)

where µ > 0 is the penalty parameter. Note that ϕ1(x) is not differentiable at some
x because of the absolute value and ∥ · ∥ function. Despite not being differentiable,
Equation 6 has a directional derivative along any direction, which allows defining a
stationary point of the measure of infeasibility as:

MInf(x) =

q∑
i=1

|hi(x)|+
m∑
i=1

max{gi(x), 0}, (7)

When MInf(x) tends to zero, it indicates feasibility. Algorithm 2 presents a general
framework based on the l1 penalty function. Exact nonsmooth penalty functions can be
defined in terms of other norms, see [23].

– Augmented Lagrangian Method: Equality Constraints. This algorithm is
similar to the quadratic penalty algorithm, but it reduces the likelihood of
ill-conditioning by introducing Lagrange multipliers into the function. This function
is known as the augmented Lagrange function, which preserves smoothness; unlike
Nonsmooth penalty functions, the augmented Lagrange function largely preserves
smoothness. By definition:

LA(x, λ) = f(x)−
q∑

i=1

λihi(x) +
µ

2

q∑
i=1

h2
i (x), (8)

where:

λk+1
i = λk

i − µkhi(xk), ∀ i = 1, . . . , q. (9)
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(a) (b)

(c) (d)

Fig. 2. Boxplots corresponding to HV indicator of Portfolio 4 for two and three objectives.

Notice that Equation 8 only considers equality constraints; thus, inequalities must be
transformed. The Augmented Lagrangian Method is presented in Algorithm 3. In this
method, the choice of the initial point xs

k+1 is less critical when using this method.

3 Proposal

As mentioned in Section 2, MOEAs are useful tools in solving CMOPs. However,
these algorithms do not always have a penalty strategy to guide them toward feasible
solutions. There are different penalty methods available, in this work, three different
methods were employed:

The Quadratic Penalty Method, Nonsmooth Penalty Functions and the Augmented
Lagrangian Method [23] to work cooperatively with the selected MOEAs (NSGA-II
and NSGA-III [10, 16]). In the following, we present the selected penalty strategies.

3.1 Numerical Results

This section is dedicated to observe the impact that penalty strategies have when used
in CMOPs, specifically in the Portfolio Optimization Problem.
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Table 2. Average value of the performance indicators of the portfolio problem for
n = 5, 10, 20, 30, 40, 50 with k = 2 via NSGA-II and NSGA-III without penalty strategy (WP),
with quadratic penalty (QP), with Nonsmooth penalty (NSP) and with Lagrangian penalty (LP).

NSGA-II

FR ∆p Hv
WP QP NSP LP WP QP NSP LP WP QP NSP LP

Portfolio 1 0.9403 0.9883 1 0.9917 1.9185e-04 7.5454e-04 7.7572e-04 6.5893e-04 0.5728 0.5500 0.5545 0.6083
(std.dev) 0.0259 0.0018 0 0.0069 1.8981e-04 1.6311e-04 1.6315e-04 3.5919e-04 2.1016e-04 2.3343e-04 0.0011 0.0029

Portfolio 2 0.8777 0.9423 0.9997 0.9460 4.4319e-04 3.5964e-04 4.3592e-04 4.7167e-04 0.3327 0.3535 0.3321 0.3489
(std.dev) 0.0610 0.0326 0.0018 0.0396 8.7398e-06 2.3808e-05 2.7188e-05 4.0999e-05 0.0878 0.0745 0.0761 0.0995

Portfolio 3 0.6010 0.8257 0.7887 0.7710 0.0020 0.0018 0.0018 0.0018 0.6264 0.6310 0.6445 0.6199
(std.dev) 0.0660 0.0536 0.0630 0.0541 4.9617e-05 7.3861e-05 5.8708e-05 6.5815e-05 0.0516 0.0.0536 0.0630 0.0541

Portfolio 4 0.8147 0.9250 0.9193 0.9227 9.6001e-04 9.5479e-04 9.0018e-04 9.7601e-04 0.6233 0.6360 0.6352 0.6290
(std.dev) 0.0630 0.0443 0.0370 0.0451 1.1139e-05 1.0845e-05 1.3419e-05 1.0860e-05 0.0537 0.0649 0.0595 0.0626

Portfolio 5 0.8027 0.9087 0.9240 0.9230 0.0018 0.0017 0.0018 0.0017 0.7206 0.7413 0.7387 0.7400
(std.dev) 0.0807 0.0537 0.0368 0.0537 2.2405e-05 1.6720e-05 1.6461e-05 1.6641e-05 0.0530 0.0671 0.0628 0.0639

Portfolio 6 0.8083 0.9170 0.9243 0.9163 0.0019 0.0018 0.0018 0.0018 0.6907 0.6848 0.7018 0.6838
(std.dev) 0.0659 0.0432 0.0362 0.0415 1.5479e-05 1.8858e-05 1.0395e-05 1.8708e-05 0.0543 0.0516 0.0499 0.0512

NSGA-III

FR ∆p Hv
WP QP NSP LP WP QP NSP LP WP QP NSP LP

Portfolio 1 0.9743 0.9987 1 0.9953 6.6309e-04 6.0168e-04 8.5694e-04 0.0013 0.5706 0.5670 0.5551 0.6528
(std.dev) 0.0179 0.0035 0 0.0035 1.9198e-04 2.0051e-04 1.3804e-04 3.3193e-04 2.0786e-04 3.3168e-04 5.0220e-04 0.0031

Portfolio 2 0.9490 0.9887 0.9997 0.9930 4.6256e-04 4.3991e-04 4.7078e-04 6.4490e-04 0.3320 0.3396 0.3195 0.3374
(std.dev) 0.0252 0.0063 0.0018 0.0065 7.9075e-06 1.2824e-06 3.5864e-05 2.5302e-05 0.0901 0.0822 0.0989 0.1193

Portfolio 3 0.6853 0.9283 0.9033 0.8650 0.0024 0.0023 0.0022 0.0023 0.6075 0.6197 0.6283 0.6286
(std.dev) 0.1022 0.0385 0.0434 0.0581 6.2940e-05 4.5772e-05 4.0169e-05 4.2092 0.0676 0.0604 0.0713 0.1022

Portfolio 4 0.9010 0.9627 0.9623 0.9577 0.0011 0.0011 0.0011 0.0010 0.6183 0.5958 0.6132 0.6033
(std.dev) 0.0491 0.0215 0.0319 0.0275 9.0502e-06 9.8507e-06 1.9612e-05 1.4121e-05 0.0627 0.0747 0.0632 0.0742

Portfolio 5 0.8717 0.9537 0.9620 0.9513 0.0020 0.0019 0.0019 0.0019 0.7249 0.7341 0.7320 0.7317
(std.dev) 0.0589 0.0361 0.0277 0.0359 2.0833e-05 2.0766e-05 2.1443e-05 2.0607e-05 0.0604 0.0660 0.0617 0.0668

Portfolio 6 0.8557 0.9457 0.9517 0.9460 0.0020 0.0019 0.0020 0.0019 0.7074 0.6933 0.7256 0.6944
(std.dev) 0.0704 0.0332 0.0296 0.0333 2.4282e-05 2.8865e-05 1.6134e-05 2.8940e-05 0.0651 0.0623 0.0472 0.0621

For the numerical experiments, we considered six portfolio problems (for k = 2
and k = 3, see Equation (3) and Equation (4) respectively), each one related to
a different number of assets (5, 10, 20, 30, 40, 50, respectively). We compared the
behavior of NSGA-II, NSGA-III, and MOPSO [22] when solving each one of the
portfolio problems without penalization (WP) and with different types of penalty
strategies (QP, NSP, LP).

For all experiments, we have executed 30 independent runs using 100,000 function
evaluations. For the numerical experiments, we used PlatEMO [28]. Table 1 contains
the algorithm parameter values used for the experimental setting. The performance
indicators ∆p and Hypervolume(Hv) [26, 4, 31, 32] are used to measure the penalty
strategy effectiveness.

In this work, the real PF used to compute the ∆p indicator is obtained by
theoretically solving the Portfolio Optimization Problem. To compute the Hv indicator,
we normalized each objective value of the approximated solution and then set the
reference point as [1, 1] for two objectives and [1, 1, 1] for three objectives. We also
measure the feasibility rate (FR) of each run. FR is defined as:

FR =
number of feasible individuals

number of total individuals
. (10)
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Table 3. Average value of the performance indicators of the portfolio problem for
n = 5, 10, 20, 30, 40, 50 with k = 3 via NSGA-II and NSGA-III without penalty
strategy (WP), with quadratic penalty (QP), with Nonsmooth penalty (NSP) and with Lagrangian
penalty (LP).

NSGA-II

FR Hv
WP QP NSP LP WP QP NSP LP

Portfolio 1 0.5386 0.8214 0.8931 0.7567 0.5971 0.6329 0.6316 0.6386
(std.dev) 0.0320 0.0299 0.0120 0.0824 0.0606 0.0888 0.1225 0.0968

Portfolio 2 0.5070 0.7257 0.7270 0.7313 0.5469 0.5730 0.5566 0.5618
(std.dev) 0.0426 0.0364 0.0469 0.0450 0.0522 0.0408 0.0368 0.0478

Portfolio 3 0.4437 0.6983 0.6940 0.7053 0.7025 0.7254 0.7155 0.7179
(std.dev) 0.0491 0.0318 0.0294 0.0487 0.0911 0.0783 0.0982 0.0623

Portfolio 4 0.4227 0.6750 0.6730 0.6810 0.6857 0.6815 0.6920 0.6980
(std.dev) 0.0498 0.0367 0.0455 0.0370 0.0628 0.0631 0.0623 0.0582

Portfolio 5 0.4150 0.6770 0.6757 0.6730 0.6963 0.7007 0.7065 0.7047
(std.dev) 0.44 0.0503 0.0398 0.0497 0.0761 0.0701 0.0636 0.0653

Portfolio 6 0.4180 0.6500 0.6593 0.6497 0.7272 0.7212 0.7438 0.7471
(std.dev) 0.0387 0.0409 0.0486 0.0472 0.0668 0.0598 0.0761 0.0677

NSGA-III

FR Hv
WP QP NSP LP WP QP NSP LP

Portfolio 1 0.5994 0.8975 0.9481 0.8753 0.7049 0.7291 0.7471 0.6936
(std.dev) 0.0399 0.0295 0.0221 0.0905 0.1665 0.1395 0.1521 0.1550

Portfolio 2 0.5642 0.7781 0.7933 0.7969 0.6144 0.6213 0.6131 0.6285
(std.dev) 0.0473 0.0362 0.0387 0.0633 0.0464 0.0444 0.0346 0.0544

Portfolio 3 0.4772 0.7283 0.7083 0.7103 0.7846 0.7916 0.7892 0.7928
(std.dev) 0.0531 0.0320 0.0375 0.0460 0.0627 0.0652 0.0481 0.0571

Portfolio 4 0.4150 0.6847 0.6944 0.6733 0.7750 0.7873 0.7951 0.8106
(std.dev) 0.0488 0.0425 0.0349 0.0386 0.0644 0.0508 0.0532 0.0425

Portfolio 5 0.4008 0.6628 0.6636 0.6719 0.7890 0.8083 0.7985 0.7962
(std.dev) 0.0436 0.0377 0.0527 0.0376 0.0592 0.0551 0.0499 0.0620

Portfolio 6 0.3861 0.6536 0.6578 0.6450 0.7819 0.8016 0.8194 0.7946
(std.dev) 0.0370 0.0495 0.0459 0.0461 0.0539 0.0610 0.0607 0.0542

We claim that by using penalty strategies, not only does the feasibility rate improve,
but we also improve the performance of the MOEAs when solving the portfolio
optimization problem. Table 2 shows the obtained results using NSGA-II and NSGA-III
for the portfolio problem of k = 2 and Table 3 shows the obtained results using
NSGA-II and NSGA-III for the portfolio problem of k = 3.

MOPSO algorithm had troubles when solving the selected CMOPs. When the
number of assets increases (n > 10), the algorithm fails in finding feasible solutions.
Figure 1 shows the behavior of NSGA-II with and without penalty strategy on a certain
execution for Portfolio 1 and 3.
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Observe that more feasible solutions can be obtained by implementing a penalty
function. First, recall that the FR indicator measures feasibility. If the indicator value
tends to 1, there is a higher prevalence of feasible solutions. Note that in all portfolios,
the FR indicator is always higher when a penalty function is applied. Additionally,
the WP value is always the smallest, meaning NSGA will always obtain more feasible
solutions by incorporating a penalty strategy.

Now, the ∆p indicator aims for convergence and distribution; a smaller value
indicates higher performance. Analyzing the case of k = 2, the first portfolio, we
notice that the ∆p indicator without applying penalty functions is lower than when a
penalty function is applied; in this case, we are considering only five decision variables.
Therefore, the standalone NSGA-II is enough to solve the problem.

However, in the remaining five portfolios (more variables), this indicator is always
better when some penalty function is applied. Finally, we have the Hv indicator, which
measures the volume of the space dominated by a set of solutions in the objective space,
so this indicator should tend to 1 when all objectives are normalized.

Note that the Hv indicator is higher in all portfolios when some penalty function is
applied. Note that for NSGA-III, we have a similar behavior. In all portfolios, the FR
indicator is always higher when some penalty function is applied, and the value of the
WP indicator is always the smallest. Also, the penalty versions outbeat the standalone
algorithm referring to ∆p and Hv indicators. Only in Portfolio 3 the higher value of HV
is found in WP.

Finally, considering the portfolio problem for k = 3 one can notice that, as expected,
penalty strategies helped the evolutionary framework and obtained solutions of higher
quality. Although the FR value is no longer as good as for k = 2, it still is better than
the standalone version.

For this case, we only measure the Hv indicator since we do not know the real Pareto
front of the problem. Finally, boxplots corresponding to the Portfolio 4 problem for two
and three objectives using the Hv indicator are presented in Figure 2. Observe that the
MOEA version with a penalty strategy gets better results than the standalone algorithm.

4 Conclusions

In this work, we deal with the Portfolio Optimization Problem; since it can be defined
as a CMOP, we are interested in analyzing how well it can be solved by MOEAs
considering penalty strategies. Our proposal uses three different penalty functions, each
with a specific characteristic. We claim that better performance is expected when a
MOEA employs a penalty strategy. Several numerical results support this claim.

Numerical experiments showed that penalty strategies helped the behavior of the
evolutionary framework, not only in terms of performance indicators (∆p and Hv) but
also by obtaining a major number of feasible individuals. Since it is a constrained
optimization problem, we aim for feasibility and optimality. Although we have
promising results, it is worth noticing that these are preliminary results since some
aspects are still pending exploration. For example, we focused here on the most
common portfolio optimization problem (2 and 3 objectives), but this problem can be
more difficult if more constraints are considered, as the ones used in [2].
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Our next steps include studying different types of portfolios and analyzing which
penalization strategy is more suitable for these types of MOPs, aiming for theoretical
results that back up them.
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